Kemarin kita sudah bahas tentang pengenalan metode klasifikasi dengan decision tree, dengan contoh data yang telah diberikan. Sekarang kita akan sedikit membahas tetang cara perhitungannya.
Hal pertama yang harus dilakukan adalah menghitung entrophy untuk keseluruhan data (buys computer = "yes" dan buys computer="no").
Berdasarkan rumus perhitungan entrophy yang kita bahas kemarin, diperoleh hasil berikut :
Info (D) = I(9,5) = -(9/14) log2 (9/14)
– (5/14) log2 (5/14) = 0.940
ket : 9 untuk yang memebeli komputer, 5 untuk yang tidak membeli komputer, 14 jumlah keseluruhan
Kemudian hitung juga entrophy, info, dan gain untuk setiap atribut.
Untuk atribut age kita dapat data di atas dengan perhitungannya :
- Entrophy
I(2,3) = -(2/5) log2 (2/5) – (3/5) log2 (3/5) = 0.971
I(4,0) = -(4/0) log2 (4/0) – (0/4) log2 (0/4) = 0
I(3,2) = -(3/2) log2 (3/2) – (2/3) log2 (2/3) = 0.971
- Info age (D)
= (5/14) I(2,3) + (4/14) I(4,0) + (5/14) I(3,2)
= 0.694
- Gain (age)
= Info (D) - Info age (D)
= 0.940 - 0.694
= 0.246
Lakukan perhitungan tersebut untuk atribut lainnya dan kemudian bandingkan nilai gain-nya. Nilai gain yang paling besar menjadi acuan awal. Dan berdasarkan grafik tree kemarin, atribut age-lah yang menjadi acuan dan memiliki nilai gain terbesar. Jika digambarkan tree pada tahap ini adalah sebagai berikut :
Langkah berikutnya adalah menentukan atribut berikutnya untuk setiap percabangan yang ada (untuk percabangan age 31..40 tidak perlu diikut sertakan dalam perhitungan karena nilai entrophy-nya adalah 0).
Hitung kembali entrophy, info, dan gain untuk setiap atribut kecuali age. Untuk menghitung gain, Info (D) yang digunakan / diacu adalah Info (D) dari percabangan bukan Info (D) awal (misal, cabang "<=30" = 0.971).
Setelah seluruh perhitungan selesai, didapatlah grafik tree yang lengkap.
Oke, demikian contoh metode klasifikasi dengan decision tree. Semoga bermanfaat.. :D
Tidak ada komentar:
Posting Komentar